Author:
Frantz Jonathan M.,Joly Robert J.,Mitchell Cary A.
Abstract
Traditional overhead lighting of dense crop stands in controlled environments favors development of upper leaf layers to maximize interception of light incident at the top of the foliar canopy. The resultant mutual shading of lower leaves in the understory of the canopy can severely limit productivity and yield of planophile crops. Intracanopy lighting alleviated the effects of mutual shading in dense, vegetative stands of cowpea [Vigna unguiculata (L.) Walp ssp. unguiculata] growing in a controlled environment by sustaining irradiance within the understory throughout development of this edible-foliage crop. For an overhead lighting system, photosynthetic photon flux (PPF) in the understory was reduced to 1% of its initial value by 35 days of growth. PPF in an intracanopy-lighted stand remained within 30 μmol·m-2·s-1 of initial values throughout the 50-day cropping period. Spectral distribution of radiation within the intracanopy-lighted stand also remained relatively constant throughout canopy development. In the overhead-lighted stand, violet and blue radiation in the understory decreased as much as 60% from initial values. Stability of the radiation environment within the intracanopy-lighted stand delayed leaf senescence 27 days beyond when interior leaves of the overhead-lighted canopy began to turn yellow on day 16. The intracanopy-lighted stand produced twice as much edible biomass per unit electrical energy consumed by lamps as for the overhead-lighted system. The treatment differences were due to the continuous presence of understory irradiation when using intracanopy lighting but not when using overhead lighting, and they underscore the importance of the entire foliar canopy in realizing the full productivity potential of dense crop stands in controlled environments.
Publisher
American Society for Horticultural Science
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献