Intracanopy Lighting Influences Radiation Capture, Productivity, and Leaf Senescence in Cowpea Canopies

Author:

Frantz Jonathan M.,Joly Robert J.,Mitchell Cary A.

Abstract

Traditional overhead lighting of dense crop stands in controlled environments favors development of upper leaf layers to maximize interception of light incident at the top of the foliar canopy. The resultant mutual shading of lower leaves in the understory of the canopy can severely limit productivity and yield of planophile crops. Intracanopy lighting alleviated the effects of mutual shading in dense, vegetative stands of cowpea [Vigna unguiculata (L.) Walp ssp. unguiculata] growing in a controlled environment by sustaining irradiance within the understory throughout development of this edible-foliage crop. For an overhead lighting system, photosynthetic photon flux (PPF) in the understory was reduced to 1% of its initial value by 35 days of growth. PPF in an intracanopy-lighted stand remained within 30 μmol·m-2·s-1 of initial values throughout the 50-day cropping period. Spectral distribution of radiation within the intracanopy-lighted stand also remained relatively constant throughout canopy development. In the overhead-lighted stand, violet and blue radiation in the understory decreased as much as 60% from initial values. Stability of the radiation environment within the intracanopy-lighted stand delayed leaf senescence 27 days beyond when interior leaves of the overhead-lighted canopy began to turn yellow on day 16. The intracanopy-lighted stand produced twice as much edible biomass per unit electrical energy consumed by lamps as for the overhead-lighted system. The treatment differences were due to the continuous presence of understory irradiation when using intracanopy lighting but not when using overhead lighting, and they underscore the importance of the entire foliar canopy in realizing the full productivity potential of dense crop stands in controlled environments.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3