Stable Transformation of Gladiolus Using Suspension Cells and Callus

Author:

Kamo Kathryn,Blowers Alan,Smith Franzine,Van Eck Joyce,Lawson Roger

Abstract

More than 100 transgenic Gladiolus plants were recovered after particle bombardment of regenerable suspension cells and callus. For transformation, Gladiolus callus and suspension cells were co-bombarded with phosphinothricin acetyltransferase-(PAT) and ß- glucuronidase (GUS) -expressing plasmids. Stably transformed calli were selected on medium containing either phosphinothricin (PPT) or bialaphos followed by transfer to a regeneration medium to recover transgenic plants. Stable transformation was confirmed by detection of the PAT gene by DNA gel blot analysis and by enzymatic assays to measure GUS activity. In general, particle bombardment of regenerable suspension cells rather than callus resulted in the largest number of transformants. The rate of co-expression for GUS in PPT-resistant plants was high (≈ 70%). Promoters that are typically more efficient in dicotyledonous plants were very active in Gladiolus, a monocotyledonous bulb plant. Establishment of an efficient transformation protocol for Gladiolus will now allow the introduction of transgenes to confer resistance to the viral and fungal pathogens that decrease Gladiolus production.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3