Effect of Intensity and Duration of Heat-shock Treatments on Wound-induced Phenolic Metabolism in Iceberg Lettuce

Author:

Loaiza-Velarde Julio G.,Tomás-Barberá Francisco A.,Saltveit Mikal E.

Abstract

Wounding during minimal processing of lettuce (Lactuca sativa, L.) induces alterations in phenolic metabolism that promote browning and the loss of quality. The activity of phenylalanine ammonia-lyase (PAL; the first committed enzyme in phenylpropanoid metabolism) and the concentration of phenolic compounds (e.g., chlorogenic acid, dicaffeoyl tartaric acid, and isochlorogenic acid) increase in excised iceberg lettuce midrib segments after wounding. The effect of short heat-shock treatments on browning and phenolic metabolism in excised midrib segments of iceberg lettuce was studied. As the heat-shock temperature increased from 20 to 70 °C, there was a decrease in the subsequent increase in PAL activity and the accumulation of phenolic compounds in excised midrib segments. Treatments of 45 °C for 120 s, 50 °C for 60 s, or 55 °C for 30 s significantly reduced the increase in PAL activity and subsequent browning seen in control tissue after wounding. Exposure to 45 °C for 480 s, 50 °C for 60 s, or 55 °C for 45 s prevented PAL activity from rising above initial levels. Phenolic compounds remained at initial levels for 3 days in excised midribs exposed to 50 °C for 90 s or to 55 °C for 60 s. However, 55 °C damaged the tissue, as indicated by a* and L* Hunter color values. The synthesis of chlorogenic acid, dicaffeoyl tartaric acid, and isochlorogenic acid was greatly reduced by these heat-shock treatments. These treatments also decreased polyphenol oxidase activity and, to a lesser extent, peroxidase activity.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3