Differential Responses of Antioxidants, Abscisic Acid, and Auxin to Deficit Irrigation in Two Perennial Ryegrass Cultivars Contrasting in Drought Tolerance

Author:

Zhang Xunzhong,Ervin Erik H.,Liu Yiming,Hu Guofu,Shang Chao,Fukao Takeshi,Alpuerto Jasper

Abstract

Water deficit is a major limiting factor for grass culture in many regions with physiological mechanisms of tolerance not yet well understood. Antioxidant isozymes and hormones may play important roles in plant tolerance to water deficit. This study was designed to investigate antioxidant enzymes, isozymes, abscisic acid (ABA), and indole-3-acetic acid (IAA) responses to deficit irrigation in two perennial ryegrass (Lolium perenne L.) cultivars contrasting in drought tolerance. The plants were subjected to well-watered {100% container capacity, 34.4% ± 0.21% volumetric moisture content (VWC), or deficit irrigation [30% evapotranspiration (ET) replacement; 28.6% ± 0.15% to 7.5% ± 0.12% VWC]} conditions for up to 8 days and rewatering for 4 days for recovery in growth chambers. Deficit irrigation increased leaf malondialdehyde (MDA) content in both cultivars, but drought-tolerant Manhattan-5 exhibited lower levels relative to drought-sensitive Silver Dollar. Superoxide dismutase (SOD) activity declined and then increased during water-deficit treatment. ‘Manhattan-5’ had higher SOD activity and greater abundance of SOD1 isozyme than ‘Silver Dollar’ under water deficit. Deficit irrigation increased catalase (CAT) and ascorbate peroxidase (APX) activity in ‘Manhattan-5’, but not in ‘Silver Dollar’. ‘Manhattan-5’ had higher CAT, APX, and peroxidase (POD) activity than ‘Silver Dollar’ during water limitation. Deficit irrigation increased mRNA accumulation of cytosolic cupper/zinc SOD (Cyt Cu/Zn SOD), whereas gene expression of manganese SOD (Mn SOD) and peroxisome APX (pAPX) were not significantly altered in response to deficit irrigation. No differences in Cyt Cu/Zn SOD, Mn SOD, and pAPX gene expression were found between the two cultivars under deficit irrigation. Water limitation increased leaf ABA and IAA contents in both cultivars, with Silver Dollar having a higher ABA content than Manhattan-5. Change in ABA level may regulate stomatal opening and oxidative stress, which may trigger antioxidant defense responses. These results indicate that accumulation of antioxidant enzymes and ABA are associated with perennial ryegrass drought tolerance. Activity and isozyme assays of key antioxidant enzymes under soil moisture limitation can be a practical screening approach to improve perennial ryegrass drought tolerance and quality.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3