Phytochrome-regulated Growth of Young Watermelon Plants

Author:

Decoteau Dennis R.,Friend Heather H.

Abstract

Phytochrome-regulated growth of watermelon [Citrulls lanatus (Thunb.) Matsum & Naki cv. Sugar Baby] was investigated by treating plants with brief exposures of red (R) or far-red (FR) light at the end of the daily photoperiod. Light treatments were initiated when the plants were 2 weeks old (two true-leaf stage). After 4 days of treatment, petiole lengths of leaf 1 (first leaf above the cotyledon) and leaf 2 (second leaf above the cotyledon) were longer, and the angle formed between these two petioles was more acute in plants treated with end-of-day (EOD) FR than in plants treated with EOD R light or non-EOD-treated plants (control). After 7 days of treatment, internodes 2 and 3 and petioles from leaves 1, 2, and 3 were longer from plants treated for 7 days with EOD FR light than from plants treated with EOD R light or from controls. The EOD FR light promotion of internode, petiole angle, and petiole elongation was reversible by immediately following the FR with R, implicating the involvement of phytochrome in the regulation of these growth processes of watermelon. After 21 days of treatment, most of the internodes (six of eight) from the EOD FR-treated plants were longer than the corresponding internodes from the EOD R-treated plants. Plants that were treated with EOD light for 21 days and then grown for an additional 14 days without EOD light treatments exhibited no residual EOD light effect on internode elongation (as compared to plants not exposed to EOD light). Residual EOD FR light treatment effects on elongation of petioles 1, 2, 3, and 4 were suggested for plants treated with EOD light for 21 days and then grown for 14 days without EOD treatments.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3