Yield Responses of a Mature Olive Orchard to Water Deficits

Author:

Moriana Alfonso,Orgaz Francisco,Pastor Miguel,Fereres Elias

Abstract

Irrigation is one of the most important means of increasing olive oil production but little information exists on the responses of olive to variable water supply. Five different irrigation strategies, full irrigation, rain fed, and three deficit irrigation treatments were compared from 1996 to 1999, in Cordoba, southern Spain, to characterize the response of a mature olive (Olea europaea L. `Picual') orchard to irrigation. Crop evapotranspiration (ETc) varied from less than 500 mm in the rain fed to ≈900 mm under full irrigation. The deficit irrigation treatments had ETc values that ranged from 60% to 80% of full ETc depending on the year and treatment. Water relations, and oil content and trunk growth measurements allowed for the interpretation of yield responses to water deficits. In a deficit irrigation treatment that concentrated all its ETc deficit in the summer, stem water potential (Ψx) decreased to -7 MPa but recovered quickly in the fall, while in the treatment that applied the same ET deficit progressively, Ψx was never below -3.8 MPa. Minimum Ψx in the rain fed treatment reached -8 MPa. Yield (Y) responses as a function of ETc were calculated for biennial yield data, given the alternate bearing habit of the olive; the equation are: Y = -16.84 + 0.063 ET -0.035 × 10-3 ET2, and Y = -2.78 + 0.011 ET - 0.006 × 10-3 ET2, for fruit and oil production respectively, with responses to ET deficits being similar for sustained and regulated deficit irrigation. The yield response to a deficit treatment that was fully irrigated during the bearing year and rain fed in the nonbearing year, was less favorable than that observed in the other two deficit treatments.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 336 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3