Salinity Tolerance of Cleopatra Mandarin and Carrizo Citrange Citrus Rootstock Seedlings Is Affected by CO2 Enrichment during Growth

Author:

García-Sánchez Francisco,Syvertsen J.P.

Abstract

Three-month-old citrus rootstock seedlings of the Cl- excluder Cleopatra mandarin (Citrus reticulata Blanco) and the Cl- accumulator Carrizo citrange [C. sinensis (L.) Osb. × Poncirus trifoliata L.] were fertilized with nutrient solution with or without additional 50 mm NaCl and grown at either ambient CO2 (360 μL·L-1) or elevated CO2 (700 μL·L-1) in similar controlled environment greenhouses for 8 weeks. Elevated CO2 increased plant growth, shoot/root ratio, leaf dry weight per area, net assimilation of CO2, chlorophyll, and water-use efficiency but decreased transpiration rate. Elevated CO2 decreased leaf Ca2+ and N concentration in non-salinized Cleopatra. Salinity increased leaf Cl- and Na+ in both genotypes. Carrizo had higher concentrations of Cl-but lower Na+ in leaves than Cleopatra. Salinity decreased plant growth, shoot/root ratio, net gas exchange, water use, and root Ca+2 but increased root N in both genotypes regardless of CO2 level. Neither salinity nor elevated CO2 affected leaf chlorophyll fluorescence (Fv/Fm). Carrizo had higher Fv/Fm, leaf gas exchange, chlorophyll, N, and Ca2+ than Cleopatra. Salinity-induced decreases in leaf osmotic potential increased leaf turgor especially at elevated CO2. The increase in leaf growth at elevated CO2 was greater in salinized than in nonsalinized Carrizo but was similar in Cleopatra seedlings regardless of salt treatment. In addition, salinity decreased water-use efficiency more at elevated CO2 than at ambient CO2 in Cleopatra but not in Carrizo. Elevated CO2 also decreased leaf Cl- and Na+ in Carrizo but tended to increase both ions in Cleopatra leaves. Based on leaf growth, water-use efficiency and salt ion accumulation, elevated CO2 increased salinity tolerance in the relatively salt-sensitive Carrizo more than in the salt-tolerant Cleopatra. In salinized seedlings of both genotypes, Cl- and Na+ concentration changes in response to eCO2 in leaves vs. roots were generally in opposite directions. Thus, the modifications of citrus seedling responses to salinity by the higher growth and lower transpiration at elevated CO2 were not only species dependent, but also involved whole plant growth and allocations of Na+ and Cl-.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3