Author:
Clark David G.,Dervinis Chris,Barrett James E.,Klee Harry,Jones Michelle
Abstract
Cytokinins have been shown to delay the onset of leaf senescence. The focus of this project was to produce transgenic petunia (Petunia ×hybrida) plants that over-produced endogenous cytokinins in a senescence specific manner. This was achieved by transforming plants with the IPT (isopentenyl transferase) gene driven by the senescence-associated transcriptional promoter, PSAG12. Two independent transgenic events produced T1 and T2 generation seedling lines that demonstrated the desired nonsenescent phenotype in progeny trials. These lines were used to evaluate the horticultural performance of PSAG12-IPT petunia plants in terms of delayed senescence, rooting of vegetative cuttings, lateral branch growth, flower number, floral timing, and fruit set. Although both lines displayed a delayed senescence phenotype the two PSAG12-IPT transgenic lines differed from each other in regard to other horticultural traits. In addition to delayed leaf senescence, line I-1-7 also demonstrated a decrease in adventitious rooting and an increased number of branches during plant production. Line I-3-18 also demonstrated a delayed leaf senescence phenotype; however, plants of this line were not greatly altered in any other horticultural performance traits in comparison to wild-type `V26'. IPT transcript was detected in young fully expanded leaves of both lines, although mRNA levels were higher in I-1-7 plants. A greater than 50-fold increase in IPT transcript abundance was detected in leaves of transgenic plants following drought stress. These results demonstrate that it is possible to use PSAG12-IPT to produce transgenic plants with delayed leaf senescence but differences in plant morphology between transgenic lines exist, which may alter horticultural performance characteristics.
Publisher
American Society for Horticultural Science
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献