Physiological and Molecular Responses of Aeroponically Grown Tomato Plants to Phosphorus Deficiency

Author:

Biddinger Eric J.,Liu Chunming,Joly Robert J.,Raghothama K.G.

Abstract

Phosphorus is one of the essential but limiting nutrients in nature. In this study, we link the physiological changes occurring under phosphate (Pi) starvation to gene expression. Roots of aeroponically grown tomato (Lycopersicon esculentum L.) plants were sprayed intermittently with nutrient solutions containing varying concentrations of P. Decreasing the concentration of Pi in the nutrient solution resulted in reduced biomass production and altered the tissue concentration of nutrients in roots and shoots. Phosphorus starvation increased the root:shoot biomass ratio and decreased net CO2 assimilation and stomatal conductance. Phosphorus concentrations in roots and shoots decreased with decreasing concentration of Pi in the nutrient solution. Pi-deficient plants had a higher concentration of Ca in roots and Mg in shoots. Expression of the Pi starvation-induced gene, TPSI1, persisted even after 3 weeks of Pi starvation. The transcript accumulation in leaves was found to be a specific response to Pi starvation and not to the indirect effects of altered N, K, Fe, Mg, or Ca status. Accumulation of transcripts was also observed in stem and petioles, suggesting a global role for TPSI1 during Pi starvation response of tomatoes.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3