Antioxidant Enzyme Activities and Gene Expression Patterns in Leaves of Kentucky Bluegrass in Response to Drought and Post-drought Recovery

Author:

Xu Lixin,Han Liebao,Huang Bingru

Abstract

The objectives of this study were to examine antioxidant enzyme responses to drought stress and rewatering at both enzymatic activity and transcript levels and to determine the major antioxidant processes associated with drought tolerance and post-drought recovery for a perennial grass species, kentucky bluegrass (Poa pratensis). Antioxidant enzyme responses to drought and rewatering in a drought-tolerant cultivar (Midnight) and a drought-sensitive cultivar (Brilliant) were compared in a growth chamber. Plants were exposed to 22 days of drought stress for ‘Midnight’ and 18 days for ‘Brilliant’ before rewatering to allow the leaf relative water content (RWC) of both cultivars to drop to the same level. ‘Midnight’ exhibited higher photochemical efficiency (Fv/Fm) and lower electrolyte leakage compared with ‘Brilliant’ when at the same water deficit status (26% to 28% RWC). After 6 days of rewatering, all physiological parameters returned to the control level for ‘Midnight’, but only Fv/Fm fully recovered for ‘Brilliant’. The transcript level of cytosolic copper/zinc superoxide dismutase (cyt Cu/Zn SOD) and ascorbate peroxidase (APX) was significantly higher in ‘Midnight’ than in ‘Brilliant’ when exposed to the same level of water deficit (26% to 28% RWC), suggesting that SOD and APX could be involved in scavenging oxidative stress-induced reactive oxygen species in kentucky bluegrass through changes in the level of gene expression. Significantly higher activities of APX, monodehydroascorbate reductase, glutathione reductase, and dehydroascorbate reductase as well as lower lipid peroxidation levels were observed in ‘Midnight’ versus ‘Brilliant’ when exposed to drought. However, the activities of SOD, catalase (CAT), and guaiacol peroxidase (POD) did not differ between the two cultivars. After 6 days of rewatering, ‘Midnight’ displayed significantly higher activity levels of CAT, POD, and APX compared with ‘Brilliant’. The enzyme activity results indicate that enzymes involved in the ascorbate–glutathine cycle may play important roles in antioxidant protection to drought damage, whereas CAT, POD, and APX could be associated with better post-drought recovery in kentucky bluegrass.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3