Salinity Tolerance in Four Wild Tomato Species using Vegetative Yield-Salinity Response Curves

Author:

Bolarín M.C.,Fernández F.G.,Cruz V.,Cuartero J.

Abstract

The salinity tolerances of 21 accessions belonging to four wild tomato species [Lycopersicon pimpinellifolium (Jusl.) Mill., L. peruvianum (Corr.) D'Arcy, L. hirsutum (L.) Mill., and L. pennellii Humb. Bonpl.) were evaluated using their vegetative yield-salinity response curves at the adult stage, determined by a piecewise-linear response model. The slope (yield decrease per unit salinity increase), salinity response threshold, maximum electrical conductivity without yield reduction (ECo), and salinity level for which yield would be zero (ECo) were determined by a nonlinear least-squares inversion method from curves based on the response of leaf and stem dry weights to substrate EC. The genotype PE-2 (L. pimpinellifolium) had the highest salt tolerance, followed by PE-45 (L. pennellii), PE-34, PE-43 (L. hirsutum), and PE-16 (L. peruvianum). The model also was tested replacing substrate salinity levels with leaf Cl- or Na+ concentrations. Concentrations of both ions for which vegetative yields were zero (Clo and Nao) were determined from the response curves. In general, the most tolerant genotypes were those with the highest Clo and Nao values, suggesting that the dominant salt-tolerance mechanism is ion accumulation, but there were cases in which salt tolerance was not related to Clo and Nao.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3