Flower Production, Fruit Set, and Physiology of Bell Pepper during Elevated Temperature and Vapor Pressure Deficit

Author:

Erickson Ami N.,Markhart Albert H.

Abstract

High temperature reduces fruit set in bell pepper [Capsicum annuum L. var. annuum (Grossum Group)], and reduction of pepper productivity, resulting from high temperature, may be a direct effect of temperature or an indirect effect of water stress induced by increased vapor pressure deficits (VPDs) at high temperature. We evaluated responses of plant growth, reproduction, net photosynthesis (PN), chlorophyll fluorescence, predawn respiration, leaf water potential, and stomatal conductance of `Ace' and `Bell Boy' bell pepper to elevated temperature (33 °C) with increased VPD (2.1 kPa) or elevated temperature with no increase in VPD (1.1 kPa). VPD had no effect on flower number or fruit set and did not adversely influence the physiological processes measured. Therefore, deleterious effects of high temperature on pepper fruit set does not appear to be temperature induced water stress, but is more likely a direct temperature response. Elevated temperature decreased fruit set but not flower production. Gas exchange measurements suggest failure to set fruit was not due to reduced leaf photosynthesis.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3