Effect of Leaf and Plant Age, and Day/Night Temperature on Net CO2 Uptake in Phalaenopsis amabilis var. formosa

Author:

Guo Woei-Jiun,Lee Nean

Abstract

In this study, effects of leaf age (20 to 240 days), plant age (4, 8, and 14 months after deflasking), and various day/night temperature regimes (16 to 33 °C) on photosynthesis of Phalaenopsis amabilis L. Blume var. formosa Shimadzu (Phal. TS97) leaves were investigated. The diurnal net CO2 uptake in Phal. TS97 leaves was measured and integrated to obtain total net CO2 uptake, which represents photosynthetic efficiency in plants performing crassulacean acid metabolism (CAM). Under all conditions, Phal. TS97 leaves performed typical CAM photosynthesis and reached their highest net CO2 uptake rate, ≈6 μmol·m-2·s-1, after 3 to 4 hours in the dark under a 12-hour photoperiod. When grown under 30 °C day/25 °C night temperature, the total net CO2 uptake of leaf increased with maturation and was highest at 80 days old, 20 days after full expansion. The CAM photosynthetic capacity of mature leaves remained high after maturation and began to decline at a leaf age of 240 days. The trend was consistent with malate fixation but the highest nocturnal malate concentration was observed in 100-day-old leaves. Young leaves or leaves from small juvenile plants had higher daytime CO2 fixation compared to mature leaves or large plants, suggesting that Phal. TS97 leaves progressed from C3-CAM to CAM during the course of maturation. The second newly matured leaf from the top had the highest net CO2 fixation when the newest leaf was 8 cm in length. Although plant age did not influence total CO2 uptake in the leaf, photosynthetic efficiency of leaves in small younger plants was more sensitive to high light intensity, 340 μmol·m-2·s-1 photosynthetic photon flux. The day/night temperature of 32/28 and 29/25 °C resulted in the highest total net CAM CO2 fixation in vegetative Phal. TS97 plants than higher (33/29 °C) and lower temperatures (21/16 °C).

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3