Effects of In Vitro-formed Roots and Acclimatization on Water Status and Gas Exchange of Tissue-cultured Apple Shoots

Author:

Díaz-Pérez Juan C.,Shackel Kenneth A.,Sutter Ellen G.

Abstract

Little is known about the physiological changes that occur during acclimatization and how these changes influence plant survival and growth in the new environment. In particular, it is unclear to what extent in vitro-formed roots are functional in water uptake, particularly when the plantlet is exposed to conditions of increasing evaporative demand. Tissue-cultured shoots and plantlets (shoots with roots) were acclimatized by exposing them to a linear reduction in relative humidity (RH) from 99 % to 75%over 4 days. When conductance was measured at 95% RH (21 C), in vitro shoots and plantlets showed a very high initial conductance, followed by a gradual decline, reaching steady state in 12 hours. Acclimatized shoots and plantlets had a 50% lower initial conductance compared to nonacclimatized ones, and reached steady state in 4 hours. The reduction in conductance as a result of acclimatization most likely contributes to a reduced transpiration under conditions of increased evaporative demand. Roots formed in vitro were associated with a higher plant water status, suggesting that these roots were functional in water uptake. Relative water content of the shoot was positively correlated with leaf conductance and net photosynthesis. We suggest that tissue-cultured plantlets behave as hydraulically integrated units, in which there must be a coordination between control of water loss by the shoot and uptake of water by the root to maintain a favorable plant water balance. Our results also indicate that methods that use excised shoots or leaves to determine transpiration gravimetrically may not accurately represent the stomatal water loss characteristics of tissue-cultured plants.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3