Relationship between Cold Tolerance during Seed Germination and Vegetative Growth in Tomato: Germplasm Evaluation

Author:

Foolad M.R.,Lin G.Y.

Abstract

Cold tolerance (CT) of 31 tomato accessions (cultivars, breeding lines, and plant introductions) representing six Lycopersicon L. sp. was evaluated during seed germination and vegetative growth. Seed germination was evaluated under temperature regimes of 11 ± 0.5 °C (cold stress) and 20 ± 0.5 °C (control) in petri plates containing 0.8% agar medium and maintained in darkness. Cold tolerance during seed germination was defined as the inverse of the ratio of germination time under cold stress to germination time under control conditions and referred to as germination tolerance index (TIG). Across accessions, TIG ranged from 0.15 to 0.48 indicating the presence of genotypic variation for CT during germination. Vegetative growth was evaluated in growth chambers with 12 h days/12 h nights of 12/5 °C (cold stress) and 25/18 °C (control) with a 12 h photoperiod of 350 mmol.m-2.s-1 (photosynthetic photon flux). Cold tolerance during vegetative growth was defined as the ratio of shoot dry weight (DW) under cold stress (DWS) to shoot DW under control (DWC) conditions and referred to as vegetative growth tolerance index (TIVG). Across accessions, TIVG ranged from 0.12 to 0.39 indicating the presence of genotypic variation for CT during vegetative growth. Cold tolerance during vegetative growth was independent of plant vigor, as judged by the absence of a significant correlation (r = 0.14, P > 0.05) between TIVG and DWC. Furthermore, CT during vegetative growth was independent of CT during seed germination, as judged by the absence of a significant rank correlation (rR = 0.14, P > 0.05) between TIVG and TIG. A few accessions, however, were identified with CT during both seed germination and vegetative growth. Results indicate that for CT breeding in tomato, each stage of plant development may have to be evaluated and selected for separately.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3