Yield of Trickle-irrigated Tomatoes as Affected by Time of N and K Application

Author:

Dangler James M.,Locascio Salvadore J.

Abstract

Tomatoes (Lycopersicon esculentum Mill.) were grown on polyethylene-mulched beds of an Arredondo fine sand during two seasons to evaluate the effects of trickle-applied N and/or K, percentages of trickle-applied N and K (50%, 75%, and 100%), and schedules of N and K application on fruit yield, and leaf and shoot N and K concentrations. The daily irrigation requirement, calculated at 47% of the water evaporated from a U.S. Weather Service Class A pan (Epan), was met by the application of 4.6 mm to 7.2 mm water/day. Fertilizer was injected weekly in a variable (2% to 12.5% of the total amount weekly) or constant (8.3% of the total amount weekly) schedule during the first 12 weeks of each season. Trickle-applied nutrients and trickle-applied percentage of nutrients interacted in their effects on early, midseason, and total marketable fruit yields. When N + K and N were trickle-applied, the mean early total marketable fruit yield decreased linearly from 25.3 t·ha-1 to 16.3 t·ha-1 as the trickle-applied percentage of nutrients increased from 50% to 100%; but when K was trickle-applied (100% preplant-applied N), yields were not affected by the trickle-applied percentage (mean 26.3 t·ha-1). The weekly schedule of N and K injection had no effect on fruit yield or other characteristics. Higher leaf N and K concentrations early in the season were obtained when the respective nutrient was 50% to 100% preplant-applied than when the respective nutrient was 75% to 100% trickle-applied; but late in the season, higher concentrations were obtained when the respective nutrient was trickle-applied. Higher yields, however, were associated with higher early season leaf N concentrations rather than with higher late-season leaf N or K concentrations.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3