Comparative Growth, Morphology, and Anatomy of Easy- and Difficult-to-acclimatize Sea Oats (Uniola paniculata) Genotypes During In Vitro Culture and Ex Vitro Acclimatization

Author:

Aracama Carmen Valero,Kane Michael E.,Wilson Sandra B.,Philman Nancy L.

Abstract

Growth and development of two sea oats (Uniola paniculata L.) genotypes with differing acclimatization capacities when transferred from in vitro to ex vitro greenhouse conditions were compared as a function of the duration of shoot multiplication and rooting stages. Anatomical and morphological development differed between genotypes in vitro. After 4, 8, and 12 weeks of Stage II culture, leaf length and shoot number were significantly greater for the easy-to-acclimatize genotype (EK 16-3) than the difficult-to-acclimatize genotype (EK 11-1). Shoot dry weights in both genotypes were greatest after 4 weeks culture. Browning and dying of tissue steadily increased with time. Shoot number per plantlet increased from Week 4 to 8 in both genotypes but decreased after 12 weeks. Once transferred to Stage III culture for 6 weeks, significant differences in root architecture and morphology were observed between the two genotypes. EK 16-3 plantlets developed short but numerous roots and “grass-like” leaves with fully expanded blades. Conversely, EK 11-1 plantlets developed few long roots and “lance-like” leaves, which were short, thick, and without expanded blades. Anatomical and morphological development during Stage III differed between culture duration and genotypes. Shoot and root dry weights of both genotypes increased during 3, 6, and 9 weeks of culture. Shoot dry weights of EK 16-3 plantlets were lower at 3 weeks but higher at 9 weeks than EK 11-1. Conversely, root dry weights were higher for EK 11-1 than for EK 16-3 plantlets throughout Stage III culture. Anatomical observations of EK 11-1 plantlets using light and electron microscopy correlated poor ex vitro acclimatization and poor survival with abnormal tissue organization, stomatal aperture blockage, and thylakoid membrane disruption.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3