Characterizing Concentration Effects of Exogenous Abscisic Acid on Gas Exchange, Water Relations, and Growth of Muskmelon Seedlings during Water Stress and Rehydration

Author:

Agehara Shinsuke,Leskovar Daniel I.

Abstract

Excess transpiration relative to water uptake often causes water stress in transplanted vegetable seedlings. Abscisic acid (ABA) can limit transpirational water loss by inducing stomatal closure and inhibiting leaf expansion. We examined the concentration effect of exogenous ABA on growth and physiology of muskmelon (Cucumis melo L.) seedlings during water stress and rehydration. Plants were treated with seven concentrations of ABA (0, 0.24, 0.47, 0.95, 1.89, 3.78, and 7.57 mm) and subjected to 4-day water withholding. Application of ABA improved the maintenance of leaf water potential and relative water content, while reducing electrolyte leakage. These effects were linear or exponential to ABA concentration and maximized at 7.57 mm. Gas-exchange measurements provided evidence that such stress control is attributed to ABA-induced stomatal closure. First, net CO2 assimilation rate and stomatal conductance initially decreased with increasing ABA concentration by up to 95% and 70%, respectively. A follow-up study (≤1.89 mm ABA) confirmed this result with or without water stress and further revealed a close positive correlation between intercellular CO2 concentration and net CO2 assimilation rate 1 day after treatment (r2 > 0.83). In contrast, ABA did not affect leaf elongation, indicating that stress alleviation was not mediated by leaf area adjustment. After 18 days of post-stress daily irrigation, dry matter accumulation showed a quadratic concentration-response, increasing up to 1.89 mm by 38% and 44% in shoot and roots, respectively, followed by 16% to 18% decreases at >1.89 mm ABA. These results suggest that excess levels of ABA delay post-stress growth, despite the positive effect on the maintenance of water status and membrane integrity. Another negative side effect was chlorosis, which accelerated linearly with increasing ABA concentration, although it was reversible upon re-watering. The optimal application rate of ABA should minimize these negative effects, while keeping plant water stress to an acceptable level.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3