Effects of Trinexapac-ethyl on Drought Responses in Creeping Bentgrass Associated with Water Use and Osmotic Adjustment

Author:

Bian Xiuju,Merewitz Emily,Huang Bingru

Abstract

Understanding factors influencing drought resistance traits is important for improving turfgrass growth in water-limited environments. The objectives of this study were to examine effects of a plant growth regulator, trinexapac-ethyl (TE), on turf growth and water use for creeping bentgrass (Agrostis stolonifera L.) exposed to drought stress, and to determine changes in the accumulation of solutes involved in osmotic adjustment associated with TE application. Plant foliage of cultivar L-93 was sprayed with 1.95 mL·L−1 of TE at 0.113% a.i. 14 days before and at the initiation of drought stress. TE-treated and untreated plants were exposed to well-watered or drought stress conditions for 28 days in a growth chamber. TE-treated plants exhibited a reduced rate of water depletion from the soil as demonstrated by higher soil water content, lower evapotranspiration rates, and higher leaf relative water content during 28 days of drought stress compared with non-TE-treated plants. During the later phase of drought stress, TE-treated plants had a greater reduction in leaf ψS at full turgor or greater osmotic adjustment, which was associated with increased accumulation of soluble sugars and inorganic ions (Ca and K) in leaves of TE-treated plants. Proline content increased in response to drought stress, but was unaffected by TE application, suggesting that it may not contribute to the effects of TE on osmotic adjustment. TE-treated plants maintained significantly higher turf quality and leaf photochemical efficiency under drought stress. The results suggest that the promotive effects of TE application on turf growth during drought stress were associated with the reduction in water depletion or lower water use and increases in osmotic adjustment due to the accumulation of inorganic solutes and soluble sugars.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3