Evaluating Woody Ornamentals for Use in Herbicide Phytoremediation

Author:

Baz Martin,Fernandez R. Thomas

Abstract

Itea virginica L. `Sprich' (virginia sweetspire), Salix alba L. (white willow), and S. gracilistyla var. melanostachys (Mak.) Miq. (black pussywillow) were treated with a 4 mg·L-1 suspension of two herbicides, isoxaben and oryzalin, a water control (water) or a nonsaturated control (control) for 9 days. Growth and photosynthetic responses were monitored before, during and after the 9-day treatment for a total of 51 days. Growth index of white willow and virginia sweetspire was only reduced by isoxaben treatment while both herbicides reduced the growth index for black pussywillow compared to control. Plant dry weights of the willows were not affected by day 9. Final dry weight was lower for both herbicide treatments for all taxa. The water treatment resulted in lower total dry weight than control only for virginia sweetspire. Isoxaben reduced photosystem II efficiency (Fv/Fm) and CO2 assimilation (A) following release from treatments of virginia sweetspire and black pussywillow. There were few differences in Fv/Fm and A for white willow. The response to oryzalin was similar to water for most parameters measured for virginia sweetspire and white willow. Growth was more strongly affected by oryzalin for black pussywillow than for other taxa but there were few differences in Fv/Fm or A between oryzalin and control for any of the taxa. Virginia sweetspire and white willow showed promise for use in phytoremediation of oryzalin but none of the taxa performed well under the levels of isoxaben used. Chemical names used: isoxaben (N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyly]-2,6-dimethoxybenzamide); oryzalin (4-(dipropylamino)-3,5-dinitrobenzenesulforamide).

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3