Soil Moisture and Temperature Effects on shrunken2 Sweet Corn Seed Decay and Seedling Blight Caused by Penicillium oxalicum

Author:

Callan Nancy W.,Miller James B.,Mathre Don E.,Mohan S. Krishna

Abstract

Sweet corn (Zea mays L.) seed is commonly infected or infested with fungi that can impair stand establishment. Among these, Penicillium oxalicum Currie and Thorn is known to cause preemergence damping-off or postemergence seedling blight. Supersweet, or shrunken2 (sh2), sweet corn cultivars are particularly affected by seedborne fungal pathogens, although the effects of seed infection on seedling emergence and stand are variable under field conditions. This study was conducted to examine factors that could influence the impact of P. oxalicum on seedling stand, including P. oxalicum inoculum density on seed and in soil, soil moisture, soil temperature, and control of seed decay caused by soilborne Pythium ultimum Trow. Seed surface disinfestation usually had no effect on seedling stand under conditions favoring infection by P. ultimum. Inoculation of sh2 sweet corn seeds or infestation of soil with conidia of P. oxalicum resulted in increasing severity of damping-off and seedling blight as inoculum density increased. In pasteurized soil in the greenhouse, an inoculum density of 102 P. oxalicum conidia per seed reduced emergence and induced seedling blight. In the field, where P. ultimum was also a factor, 106 conidia per seed were needed to reduce emergence and 105 conidia per seed to reduce healthy seedling stand. When pythium seed decay was controlled by metalaxyl seed treatment, seedling emergence and healthy seedling stand were both reduced at 1 × 106 P. oxalicum conidia per seed. When sh2 sweet corn seed was inoculated with conidia of P. oxalicum and incubated in soil at subgermination moisture contents (4.2 to -7.8 MPa) for 2-4 weeks before planting and irrigating, P. oxalicum reduced seedling emergence at all soil moisture levels, but caused the greatest amount of injury after planting when seeds were incubated in soil above -5.1 MPa. As soil temperature increased from 9-25C, seedling emergence from seed inoculated with P. oxalicum was progressively reduced, with a decrease of nearly 50% at 25 C. Penicillium oxalicum has the greatest potential to reduce seedling stand when infected sweet corn seeds are planted in warm, dry soil, but the effects of this and other seedborne fungal pathogens may be masked under conditions favoring infection by P. ultimum.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3