Abstract
Infrared and chlorophyll fluorescence imaging methods are useful techniques to evaluate environmental effects on plant performance. With the advent of digital imaging and advances in sensor technology, infrared (IR) thermography has become more accurate and less expensive. Modern IR cameras can resolve 0.5 °C temperature differences and research-grade instruments can resolve 0.05 °C. This precision has allowed the physical processes of freezing and transpiration to be more accurately studied and modeled. Chlorophyll fluorescence imaging, although still an expensive technology, has also become sufficiently rugged to be useful in the field. The measurement of quantum efficiency, Fv/Fm, provides clear data on the effect of various environmental and biotic effects on the performance of photosynthesis in plants through the effect on photosystem II. Modern digital cameras with low signal-to-noise ratios can also image chlorophyll fluorescence using time lapse exposure. Peltier-cooled charge coupled device (CCD) cameras can measure the autoluminescence in stressed plants that is generated by reactive oxygen species. Advances in technology have reduced the cost and precision of imaging equipment to a point that they are more applicable tools to plant scientists.
Publisher
American Society for Horticultural Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献