Nondestructive Determination of Fruit Surface Area Using Archimedean Buoyancy

Author:

Hurtado Grecia,Lüdeke Patrick,Knoche Moritz

Abstract

Estimates of fruit surface area are often required in physiological and technological studies. The objective was to establish a procedure to accurately quantify the fruit surface area based on Archimedean buoyancy measurements. The setup comprised a fixed, linear stepper motor mounted with its spindle vertical and aligned directly above the pan of an electronic balance. A fruit was clamped to the motor spindle and a beaker of water rested on the balance pan. When the motor was activated, the fruit was progressively immersed, stepwise, in the water. Each vertical displacement step increased the buoyant upthrust on the fruit, which was opposed by a corresponding increase in the downthrust on the balance. Pairs of the step displacement length (mm) and corresponding buoyancy increment (g) values were recorded in an MS Excel (Microsoft, Redmond, WA) spreadsheet using Arduino components. Each displacement step immersed another “virtual slice” of the fruit in the water. From each pair of known displacement–buoyancy measurements, the volume (mL) of that slice could be calculated with high precision based on the known density of the liquid (g·mL−1). With the fruit orientated so that its morphological “long” axis was vertical, for most fruitcrop species, the slice can be assumed to have a circular cross-section. Hence, the slice can be analyzed geometrically as a truncated cone of known height (mm) and known volume (mL). Therefore, the surface area of its outer face is calculable. The surface area of the whole fruit was calculated as the cumulative total of the surface areas of all steps (virtual slices). The procedure was evaluated and calibrated using stainless-steel spheres in place of the fruit. However, the measured surface area was slightly greater than that calculated for a sphere. The calculated and measured areas did not differ by more than 1.7%. The surface area determinations were highly reproducible (cv = 0.95%). The magnitude of the displacement steps affected the variability of the surface area measurements. Increasing the step displacements decreased the measurement variability, but there were no significant effects on the surface area measurements of the surface tension of the liquid or of the wettability of the surface of the fruit or the stainless-steel subject. Using stainless-steel spheres (diameter, 5–60 mm) or rubber truncated cones (mean diameter, 8–45 mm) revealed an excellent agreement between the measured and calculated surface areas. Using tomatoes, grapes, blueberries, and strawberries, the measured surface areas were in excellent agreement with those calculated from the fruit dimensions and appropriate geometrical assumptions. The results demonstrate that the surface areas of fruit with approximately circular cross-sections normal to their morphological axes can be determined with high accuracy and reproducibility using Archimedean buoyancy.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3