Author:
Dickson Ryan W.,Fisher Paul R.,Padhye Sonali R.,Argo William R.
Abstract
Floriculture crop species that are inefficient at iron uptake are susceptible to developing iron deficiency symptoms in container production at high substrate pH. The objective of this study was to compare genotypes of iron-inefficient calibrachoa (Calibrachoa ×hybrid Cerv.) in terms of their susceptibility to showing iron deficiency symptoms when grown at high vs. low substrate pH. In a greenhouse factorial experiment, 24 genotypes of calibrachoa were grown in peat:perlite substrate at low pH (5.4) and high pH (7.1). Shoot dry weight, leaf SPAD chlorophyll index, flower index value, and shoot iron concentration were measured after 13 weeks at each substrate pH level. Of the 24 genotypes, analysis of variance (ANOVA) found that 19 genotypes had lower SPAD and 18 genotypes had reduced shoot dry weight at high substrate pH compared with SPAD and dry weight at low substrate pH. High substrate pH had less effect on flower index and shoot iron concentration than the pH effect on SPAD or shoot dry weight. No visual symptoms of iron deficiency were observed at low substrate pH. Genotypes were separated into three groups using k-means cluster analysis, based on the four measured variables (SPAD, dry weight, flower index, and iron concentration in shoot tissue). These four variables were each expressed as the percent reduction in measured responses at high vs. low substrate pH. Greater percent reduction values indicated increased sensitivity of genotypes to high substrate pH. The three clusters, which about represented high, medium, or low sensitivity to high substrate pH, averaged 59.7%, 42.8%, and 25.2% reduction in SPAD, 47.7%, 51.0%, and 39.5% reduction in shoot dry weight, and 32.2%, 9.2%, and 27.7% reduction in shoot iron, respectively. Flowering was not different between clusters when tested with ANOVA. The least pH-sensitive cluster included all four genotypes in the breeding series ‘Calipetite’. ‘Calipetite’ also had low shoot dry weight at low substrate pH, indicating low overall vigor. There were no differences between clusters in terms of their effect on substrate pH, which is one potential plant iron-efficiency mechanism in response to low iron availability. This experiment demonstrated an experimental and statistical approach for plant breeders to test sensitivity to substrate pH for iron-inefficient floriculture species.
Publisher
American Society for Horticultural Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献