Author:
Henry Gerald M.,Hoyle Jared A.,Beck Leslie L.,Cooper Tyler,Montague Thayne,McKenney Cynthia
Abstract
Field experiments were conducted at the Central Texas Olive Ranch in Walburg, TX, in 2011 and 2012 to evaluate the efficacy of mulch and/or preemergence herbicides for weed control in high-density olive (Olea europaea L.) production during orchard establishment. Treatments were initiated on 1 Apr. 2011 and 28 Mar. 2012 and consisted of a nontreated control, isoxaben (2.2 kg a.i./ha), oryzalin (4.5 kg a.i./ha), oxadiazon (3.36 kg a.i./ha), and mesotrione (0.14 kg a.i./ha). Hardwood mulch was applied to half of each plot following herbicide application. Weed counts, combined across species (camphorweed, texas croton, lanceleaf sage, pinnate tansymustard, tumble pigweed, common purslane, and prostrate spurge), were conducted to assess % weed cover at 4 and 12 weeks after treatment (WAT). In 2011, compared with the nonmulched no herbicide treatment, adding mulch reduced weed counts by 23 and increased weed control by 70% 4 WAT. All preemergence herbicide treatments, regardless of mulching regime, resulted in ≥97% weed control 4 WAT with the exception of oryzalin without mulch (91% weed control, 3 weeds/plot). In 2012, compared with the nonmulched no herbicide treatment, adding mulch reduced weed counts by 35 and increased weed control by 64% 4 WAT. Mulching in combination with mesotrione resulted in 100% weed control, significantly greater than mesotrione applied without mulch (98%, 2 weeds/plot) 4 WAT. Oryzalin without mulch resulted in greater weed control (94%, 4 weeds/plot) in 2012 4 WAT; however, this treatment provided the least amount of weed control of all preemergence herbicides tested. By 12 WAT, weed counts were reduced by 21 and 22 in 2011 and 2012, respectively, in response to mulching in the nontreated plots resulting in a 52% and 42% increase in weed control in 2011 and 2012, respectively. Mesotrione was the only treatment affected by mulching regime 12 WAT in 2011 and 2012. Mesotrione in combination with mulch resulted in 100% weed control in 2011 and 2012, while mesotrione without mulch resulted in 93% weed control (3 and 4 weeds/plot) 12 WAT in 2011 and 2012, respectively. Although not statistically significant, isoxaben applied alone in 2011 resulted in 97% weed control (1 weed/plot), while isoxaben in combination with mulch resulted in 94% weed control (3 weeds/plot) 12 WAT. In 2011, oryzalin and oxadiazon resulted in 87% to 92% control, regardless of mulching regime 12 WAT. Weed control in response to isoxaben in 2012 was 95% 12 WAT, regardless of mulching regime. The combination of oxadiazon + mulch resulted in similar weed control (95%, 3 weeds/plot) 12 WAT; however, oxadiazon alone and oryzalin with and without mulch resulted in 87% to 89% weed control. All preemergence herbicides evaluated provided good to excellent weed control. Isoxaben and oryzalin are labeled for use on nonbearing fruit trees or during orchard establishment, while oxadiazon is only labeled for woody ornamentals. Although not labeled for use in orchards, mesotrione may be an alternative for use in olive production. The addition of mulching did not increase weed control except when used in conjunction with mesotrione. Mulch alone provided moderate weed control when preemergence herbicides were not applied. Furthermore, the utilization of mulch in combination with preemergence herbicides may help reduce photodegradation and/or volatilization when irrigation/rainfall is limited.
Publisher
American Society for Horticultural Science