Stimulatory Effect of Fe3O4 Nanoparticles on the Growth and Yield of Pseudostellaria heterophylla via Improved Photosynthetic Performance

Author:

Li Jiaxin,Ma Yingli,Xie Yinfeng

Abstract

Nanomaterials have recently been used as growth stimulants to promote the production of crops in saline-alkali through root application. However, if applied through leaves, little is known about the effect of Fe3O4 nanoparticles (NPs) on the root growth and yield, especially for medicinal crops. To fill this gap, a single factor experiment was conducted to explore the effects of Fe3O4 NPs on growth, yield, the dry matter distribution, chlorophyll content, photosynthetic characteristics, chlorophyll fluorescence parameters, and polysaccharide content of Pseudostellaria heterophylla by foliar spraying under field conditions. Fe3O4 NPs (20–50 mg·L–1) significantly promoted growth, the dry matter distribution of root and root tuber yield per unit area. Fe3O4 NPs enhanced net photosynthetic rate (Pn) by increasing chlorophyll content. And Fe3O4 NPs increased the daily mean and peak value of Pn, and alleviated the phenomenon of “midday depression” by improving nonstomatal limitation. Chlorophyll fluorescence parameters indicating that Fe3O4 NPs promoted the photochemical activity of PSII and alleviated photoinhibition by enhancing the photochemical use of excess excitation energy. Gray correlation analysis showed that Fe3O4 NPs enhanced the adaptability of P. heterophylla photosynthesis to high temperatures and strong light. Of note, Fe3O4 NPs enhanced the polysaccharide content of the root tuber. Phytotoxic effect was recorded at high NPs (100 mg·L–1) doses. Collectively, Fe3O4 NPs could promote performance of P. heterophylla by improving photosynthetic performance, enhancing its adaptability to the environment, and increasing the distribution ratio of photosynthates to the underground part.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3