Performance of Transgenic Tomatoes Expressing Cucumber Mosaic Virus CP Gene under Epidemic Conditions

Author:

Murphy John F.,Sikora Edward J.,Sammons Bernard,Kaniewski Wojciech K.

Abstract

Three processing tomato (Lycopersicon esculentum Mill.) lines engineered to express the cucumber mosaic virus (CMV) capsid protein (CP) gene were evaluated in the summers of 1995 and 1996 under high levels of naturally occurring CMV disease pressure. One tomato line expressed the capsid protein gene from a subgroup II isolate of CMV (line 11527), whereas two lines (12261 and 12295) expressed the capsid protein genes from a CMV subgroup I and a subgroup II isolate. Evaluation of CMV incidence based on symptomatic plants revealed that only 9% and 8% of the plants in line 11527 were infected in 1995 and 1996, respectively, 5 weeks after being transplanted. None of the plants in line 12261 developed symptoms in 1995, whereas 26% were symptomatic in 1996. There were no symptomatic plants in line 12295 in either the 1995 or the 1996 trial. In contrast to the CMV transgenic lines, 96% and 95% of the susceptible control plants were symptomatic by the 5-week rating period. CMV incidence in the CMV transgenic lines was much higher when infection was based on detection of virus by enzyme-linked immunosorbent assay (ELISA). This was particularly true in the 1996 trial where no less than 97% of the plants within a treatment were determined to be infected. Though a relatively high percentage of the transgenic plants were infected, the amount of CMV that accumulated in these plants was significantly less than in the susceptible controls, which may explain the occurrence of the attenuated symptoms. Despite CMV infection of the transgenic lines in the Alabama field trials, the performance of these lines could be of practical value to growers.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Grafting in the Resistance of Tomato to Viruses;Plants;2020-08-16

2. Major Tomato Viruses in the Mediterranean Basin;Advances in Virus Research;2012

3. Tomato;Vegetables II;2008

4. Cucumoviruses;Advances in Virus Research;2003

5. Genetic Engineering and Resistance to Viruses;Transgenic Plants and Crops;2002-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3