Influence of Induced Polyploidy on Fertility and Morphology of Rudbeckia Species and Hybrids

Author:

Oates Kelly M.,Ranney Thomas G.,Touchell Darren H.

Abstract

Rudbeckia spp. are adaptable and valuable ornamental wildflowers. Development of new varieties of Rudbeckia spp., with improved commercial characteristics, would be highly desirable. Interspecific hybridization and induced polyploidy may be avenues for improvement within the genus. The objective of this study was to evaluate fertility, morphology, phenology of flowering, and perennialness (overwintering survival) for lines of diploid and induced allotetraploids of R. subtomentosa × hirta and diploid and autotetraploids of R. subtomentosa ‘Henry Eilers’. Polyploid lines were developed and propagated in vitro and then grown ex vitro in a randomized complete block design with 12 replications. Compared with their diploid counterparts, autotetraploid lines of R. subtomentosa ‘Henry Eilers’ had similar internode lengths, plant heights, number of stems, flowering times (date at first anthesis), and fall and spring survival (100%); reduced number of inflorescences and male and female fertility; and increased inflorescence diameters. Compared with their diploid counterparts, allotetraploids of R. subtomentosa × hirta had similar internode lengths, reduced number of inflorescences, delayed flowering times, and increased pollen staining. Allotetraploids had limited male and female fertility compared with no detectable fertility in their diploid counterparts. Plant height and number of stems either decreased or showed no change with induced allotetraploidy. Spring survival of diploid hybrid genotypes ranged from 0% to 82% and was not improved in the allotetraploid hybrids. For a given genotype, some polyploidy lines varied significantly in certain morphological traits (e.g., plant height) indicating somaclonal variation may have developed in vitro or there were variable genomic or epigenetic changes associated with induced polyploidy.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3