Grow Tubes Reduce Root and Crown Growth but Not Early Production during Establishment of Highbush Blueberry

Author:

Strik Bernadine C.,Buller Gil,Tarara Julie M.

Abstract

Grow tubes are sometimes used in blueberry (Vaccinium corymbosum L.) to establish plantings or replace dead plants in older fields. Two experiments were conducted at a commercial farm to evaluate the effect of various grow tubes used during planting establishment of highbush blueberry cultivars. The treatments in the first experiment were cultivar (‘Aurora’, ‘Elliott’, ‘Liberty’) and grow tube treatment (no tube, control; opaque cardboard tube in the first growing season; and opaque plastic tube in the first season or first through the second season). The treatments in the second experiment were cultivar (‘Aurora’, ‘Elliott’, ‘Liberty’, ‘Ozarkblue’) and grow tube treatment (control; translucent plastic; opaque plastic; and wire mesh tube over plants in the first growing season). The presence of a grow tube from spring to fall of the first growing season decreased crown dry weight (DW) by an average of 37% to 50% and root DW by 30% (all except translucent plastic in Expt. 2) and increased the aboveground:belowground DW ratio relative to the control by an average of 34% to 67%, depending on the experiment. Plants grown in tubes were taller, had a narrower canopy, and had fewer whips, likely a response to low light levels inside the tubes; the fewest whips were found in the opaque plastic or cardboard tubes and the most in the translucent plastic tube with an intermediate response in the wire mesh tube. Removal of grow tubes during the summer led to plant damage from sudden sun exposure. The opaque grow tubes (present in Year 1) reduced yield/plant in Year 2 for ‘Elliott’ and ‘Liberty’ (cardboard tube only) but not ‘Aurora’. Pruning plants to allow for limited early fruit production (≈0.6 kg/plant) in Year 2 did not reduce yield in Year 3 (≈2.7 kg/plant). Whereas grow tubes reduced root and crown growth in the first season, there appeared to be no longer-term adverse effect on aboveground plant growth or yield.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3