Fungicidal Effectiveness of Electrolyzed Oxidizing Water on Postharvest Brown Rot of Peach

Author:

Al-Haq Muhammad Imran,Seo Y.,Oshita S.,Kawagoe Y.

Abstract

The fungicidal effectiveness of electrolyzed oxidizing (EO) water on peach [Prunus persica (L.) Batsch.] fruit was studied. Fruit were inoculated with a spore suspension of 5 × 105 conidia/mL of Monilinia fructicola [(G. Wint.) Honey] applied as a drop on wounded and nonwounded fruits, or by a uniform spray-mist on nonwounded fruits. Fruit were immersed in tap water at 26 °C for 5 or 10 minutes (control), or treated with EO water varying in oxidation-reduction potential (ORP), pH, and free available chlorine (FAC). Following treatment, fruit were held at 20 °C and 95% relative humidity for 10 days to simulate retail conditions. Disease incidence was determined as the percentage of fruits showing symptoms of the disease, while severity was expressed as lesion diameter. EO water did not control brown rot in wound-inoculated fruits, but reduced disease incidence and severity in nonwound-inoculated peach. Symptoms of brown rot were further delayed in fruit inoculated by a uniform-spray mist compared with the nonwounded-drop-inoculated peaches. Fruit treated with EO water held for 8 days at 2 °C, 50% RH, did not develop brown rot, until they were transferred to 20 °C, 95% RH. The lowest disease incidence and severity occurred in fruit immersed in EO water for up to 5 minutes. EO water having pH 4.0, ORP 1,100 mV, FAC 290 mg·L-1 delayed the onset of brown rot to 7 days, i.e., about the period peach stays in the market from a packing house to consumer. No chlorine-induced phytotoxicity was observed on the treated fruit. This study revealed that EO water is an effective surface sanitizer, but only delayed disease development.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3