Author:
Henny Richard J.,Holm James R.,Chen Jianjun,Scheiber Michelle
Abstract
Colchicine application successfully induced tetraploids from in vitro-cultured diploid Dieffenbachia × ‘Star Bright M-1’. Shoot clumps, each with six to eight small, undifferentiated shoot primordia, were cultured in liquid Murashige and Skoog (MS) medium and treated with colchicine at rates of 0, 250, 500, or 1000 mg·L−1 for 24 h. In vitro survival of shoot clumps significantly decreased as colchicine concentrations increased. Shoot clumps that survived were transferred to colchicine-free MS medium containing 2.0 mg·L−1 N6-isopentenyl) adenine and 0.10 mg·L−1 indole-3-acetic acid. Shoots were harvested during four subsequent subcultures and planted in a soilless substrate in a shaded greenhouse. The number of plants that survived 6 months after ex vitro planting was 690, 204, 59, and 69 for colchicine treatments at 0, 250, 500, and 1000 mg·L−1, respectively. The 332 plants from colchicine treatments along with 90 control plants (selected from 690 in the control treatment) were evaluated morphologically in a shaded greenhouse. Overall plant growth, including crown height, plant canopy, and leaf size, of colchicine-treated plants was significantly less than controls. Based on the growth data, 10, 32, 15, and 16 plants from the 0, 250, 500, and 1000 mg·L−1 colchicine rates, respectively, were selected and analyzed by flow cytometry. Flow cytometry confirmed the presence of 13 tetraploids and 29 mixoploids among the 63 colchicine-treated selections; all 10 plants from the control were diploid. A colchicine rate of 500 mg·L−1 produced a higher percentage of tetraploids (10.2%) than did the 250 (2.9%) or 1000 mg·L−1 (1.4%) rates. Subsequent comparisons showed tetraploids had significantly smaller and thicker leaves, greater specific leaf weights, and longer stomata than diploids. Tetraploids also showed increased net photosynthetic rate, decreased gS, decreased intercellular CO2 concentration, decreased transpiration rate, and increased water use efficiency. Tetraploids appeared robust and their smaller size could make them potentially more durable plants used as living specimens for interior decoration.
Publisher
American Society for Horticultural Science