Author:
Sheridan Phil,Ho Winnie W.,Rodenas Yann,Ruch Donald G.
Abstract
Anthocyanin pigmentation is a significant horticultural feature in plants and can be a crucial mediator of plant–insect interactions. In carnivorous plants, the modified leaves that capture prey can be visually striking and are traditionally considered prey attractants. Nevertheless, the question of whether bold color and venation patterns function as lures for insect prey remains ambiguous, and appears to vary across taxa. Furthermore, vegetative pigments can have alternate functions as protectants against thermal and oxidative damage. Our dual-year study compares the wild-type pitcher phenotype with a true-breeding anthocyanin-free mutant of the white-topped pitcher plant (Sarracenia leucophylla Raf.). We bred full-sibling crosses of S. leucophylla carrying either the wild-type anthocyanin gene or the anthocyanin-free variant. In both experimental years, growth points were established in outdoor plots and pitchers were allowed to capture prey before harvest at the end of each growing season. Dry weight of prey biomass was measured from pitchers of both pigment morphs, along with nectary counts, pitcher size, and internal temperature. The presence of anthocyanins in trapping leaves did not affect the biomass of insects captured. Nor did wild-type or anthocyanin-free pitcher morphs differ in size, temperature, or nectary counts. Instead, pitcher height, and, nominally, mouth diameter were better predictors of prey biomass. Despite striking visual differences in pitcher color, wild-type and anthocyanin-free plants did not catch significantly different quantities of prey. Our study provides empirical data that anthocyanin pigmentation in S. leucophylla does not affect the capture of prey biomass, and supports a growing body of literature showing that pigmentation traits serve in multiple contexts.
Publisher
American Society for Horticultural Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献