Oxidative Metabolism in ‘Valencia’ Sweet Orange (Citrus sinensis Osbeck) Abscission Zone Tissue Treated with the Abscission Agent 5-Chloro-3-Methyl-4-Nitro-1H-Pyrazole

Author:

Kumar Naveen,Ebel Robert C.

Abstract

5-Chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) is an abscission agent, standardized for the mechanical harvesting of late season ‘Valencia’ sweet oranges in Florida. This work was conducted to investigate the role of CMNP to induce oxidative stress in the abscission zone (AZ) of ‘Valencia’ sweet orange. Fully mature ‘Valencia’ sweet orange trees in a commercial grove were sprayed with 2.0 mm of CMNP. The experiment was repeated three times during the Apr.–May 2013 harvest season. Fruit were harvested at 0, 1, 2, and 3 days after CMNP application. Hydrogen peroxide (H2O2) concentration and malonic dialdehyde (MDA) concentration, as well as superoxide dismutase (SOD), ascorbate peroxidase (APOD), glutathione reductase (GR), peroxidase (POD), and lipoxygenase (LOX) specific activities were measured 0, 1, 2, and 3 days after CMNP treatment (DAT). Rate of lipid peroxidation remains unchanged throughout the abscission period. However, LOX activity increased 1 DAT in AZ of treated fruit, which might produce jasmonic acid (JA), known to promote abscission in citrus. Levels of H2O2 were similar in the AZ of control and treated fruit except at 3 DAT. The specific activity of SOD declined at 2 DAT, which showed compromised SOD defense against superoxide radicals (O·−). APOD activity declined sharply at 3 DAT. Interestingly, GR activity was 1.9-fold higher in CMNP-treated fruit at 3 DAT. Higher GR and low APOD activity reflects limited functioning of the APOD/GR cycle (e.g., APOD and GR) in scavenging of H2O2 at 3 DAT. Guaiacol POD activity transiently increased at 1 DAT and then declined. POD plays an important role in cell wall lignification and indole acetic acid (IAA) oxidation. The decline in POD activity may cause a decrease in lignification while higher activity made the AZ sensitive to ethylene and thus promote abscission in citrus fruit. This work also showed that CMNP-induced abscission is a collaborative effort of oxidative metabolism in flavedo tissue (FT) and AZ.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3