Effect of Two-week High-temperature Treatment on Flower Quality and Abscission of Rosa L. ‘Belinda’s Dream’ and ‘RADrazz’ (KnockOut®) under Controlled Growing Environments

Author:

Greyvenstein Ockert,Pemberton Brent,Starman Terri,Niu Genhua,Byrne David

Abstract

The decline in sales of garden roses can, in part, be attributed to the lack of well-adapted cultivars. Successful selection for any trait requires an accurate phenotyping protocol. Apart from field screening, a protocol for phenotyping high-temperature tolerance in garden roses is yet to be established. An experiment was conducted to determine the stage of development when flowers were most sensitive to high-temperature stress. Liners of Rosa L. ‘Belinda’s Dream (BD) and the Knock Out® rose ‘RADrazz’ (KO) were planted in a soilless medium and grown in a greenhouse. Established plants were pruned retaining several nodes with leaves on two main shoots and treatments started. The experiment was conducted in growth chambers held at either 24/17 °C (control) or 36/28 °C (stress) day/night temperatures. Six time and duration temperature treatments included 8 weeks of continuous control conditions, 8 weeks of continuous stress conditions, and four sequential 2-week high-temperature shock treatments. Continuously stressed plants flowered in the least amount of days but did not differ from the continuous control-treated plants based on nonlinear thermal unit accumulation until flowering. Both cultivars had a 70% reduction in flower dry weight under continuous stress conditions. Flowers were most sensitive to high-temperature stress at the visible bud stage, which corresponds to Weeks 5 to 6 and Weeks 7 to 8 for BD and Weeks 3 to 4 and Weeks 5 to 6 for KO, respectively. KO was more resistant to flower abscission than BD when treated at the visible bud stage, but no difference in flower dry weight reduction between BD and KO was found. The number of vegetative nodes to the flower was unaffected by treatment and differed between the cultivars.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3