Author:
Strik Bernadine C.,Vance Amanda,Bryla David R.,Sullivan Dan M.
Abstract
The impact of various production systems on leaf nutrient concentration and soil organic matter, pH, and nutrient status was evaluated from the first growing season (2007) through maturity (2016) in a certified organic planting of northern highbush blueberry (Vaccinium corymbosum L.). Treatments included planting method (on raised beds or flat ground), fertilizer source (granular feather meal or fish solubles) and rate (“low” and “high” rates of 29 and 57 kg·ha−1 N, respectively, during establishment, increased incrementally as the planting matured to 73 and 140 kg·ha−1 N, respectively), mulch [sawdust, yard-debris compost topped with sawdust (compost + sawdust), or black, woven polyethylene groundcover (weed mat)], and cultivar (Duke or Liberty). Mulches were replenished, as needed, and weeds were controlled throughout the study. The impacts of year, planting method, fertilizer, mulch, and cultivar on leaf and soil nutrient levels over this 10-year study were complex with many interactions among treatments. Soil pH remained within the recommended range for all treatments. Plants fertilized with fish solubles had higher leaf N, P, and K concentrations than those fertilized with feather meal, particularly at the high N rate in both cultivars. By contrast, fertilization with feather meal increased leaf Ca. Compost + sawdust added a cumulative (2007–16) total of 2274, 400, 961, and 2744 kg·ha−1 of N, P, K, and Ca, respectively, over the use of sawdust alone, and increased the concentration of P, K (as much as 90%), Ca, and Mg in the soil relative to other mulches. Soil organic matter content averaged 4.1% under compost + sawdust, 3.3% under sawdust, and 2.9% under weed mat, averaged over the last 5 years. Mulching with weed mat or compost + sawdust increased leaf K compared with sawdust in both cultivars, regardless of fertilizer treatment. Leaf Ca, on the other hand, was highest with sawdust and tended to be lowest with weed mat in both cultivars. Soil nutrient levels were not consistently correlated with leaf nutrient concentrations, other than between soil NO3-N and leaf N (5 years) and between soil and leaf K (4 years). On average, raised beds resulted in higher concentrations of N, P, K, Fe, and Al and lower concentrations of Ca, Mg, and B in the leaves than planting on flat ground. Furthermore, concentrations of N and Ca in recent fully-expanded leaves at standard sampling time was higher in young plants than in mature plants in both cultivars, whereas the opposite was found for leaf P. In ‘Duke’, yield was positively correlated with leaf Ca in 8 out of 9 years and negatively correlated with leaf K and P in 5 and 6 years, respectively. Leaf Ca and Mg were also negatively correlated with leaf K in most years for both cultivars, as was leaf N. Although leaf N concentration was higher with added compost, regardless of fertilizer source in ‘Duke’, and when fertilized with feather meal in ‘Liberty’, this was not correlated with yield. High N rates increased leaf N concentration, but did not result in greater yield. While soil and leaf tissue testing are important to help manage fertilizer programs, the lack of a consistent relationship between soil and plant nutrient status and yield was a reflection of the complicated interactions that occurred among nutrients in these organic production systems. Soil nutrient imbalances and changes in leaf nutrient concentrations associated with extended use of compost + sawdust mulch and fish solubles may lead to growth and yield problems in longer-lived plantings. In addition, the loss of organic matter under weed mat would need to be addressed in long-term plantings for sustainable production.
Publisher
American Society for Horticultural Science