Melatonin-induced Rhizome Proliferation, Differentiation, and Rooting during Rapid Propagation of Cymbidium goeringii and Cymbidium faberi

Author:

Huang Weiting1,Huang Xiaoyan2,Fang Zhongming3

Affiliation:

1. College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China; and College of Forestry, Guizhou University, Guiyang, 550025, China

2. College of Forestry, Guizhou University, Guiyang, 550025, China

3. College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China

Abstract

Melatonin plays an important role in plant resistance to stress. The role of melatonin in the propagation of plant tissue, such as rhizome proliferation, differentiation, and seedling rooting in Cymbidium species, remains unknown. In this study, we selected C. goeringii and C. faberi as experimental materials and attempted to understand the effect of melatonin on this process. We found that 1.0 μM melatonin was beneficial for rhizome proliferation of C. goeringii, with a proliferation rate of 5.52. In terms of C. faberi, the highest proliferation rate of 8.29 was observed in the medium with 0.5 μM melatonin. In proliferation, the cut rhizome of C. goeringii is more likely to cause browning phenomenon than that of C. faberi. The addition of melatonin can significantly inhibit the browning phenomenon and improve the survival rate of C. goeringii rhizome. The highest number of shoot buds per explant (3.11 after 60 days) was observed in the medium with 1.0 μM melatonin. The number of shoot buds per explant (3.28 after 60 days) was significantly higher for C. faberi in the medium with 5.0 μM melatonin than that for the control. Furthermore, culture medium incorporated with 1.0 μM of melatonin had the best comprehensive effect of seedling height and root number and length of C. goeringii. By contrast, 0.5 μM melatonin significantly promoted root elongation of C. faberi, reaching 1.77 cm, whereas it was 0.28 cm in the control. We demonstrated that melatonin in specific concentrations effectively promote rhizome proliferation, differentiation, and seedlings rooting in the rapid propagation of C. goeringii and C. faberi.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3