Morphological Characteristics and Drought Tolerance of the Diploid and Tetraploid Angelonia angustifolia

Author:

Liao Yu-Chun1,Tsai Yun-Shan1,Yeh Der-Ming1

Affiliation:

1. Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan

Abstract

Angelonia (Angelonia angustifolia) is an important potted flowering plant or bedding plant widely used in tropical and subtropical regions. However, most Angelonia cultivars have relatively small flowers and demonstrate limited drought tolerance in root-restricted environments such as small containers. Polyploid plants often exhibit larger flowers and enhanced drought tolerance. In this study, Angelonia ‘Serena White’ seeds and ‘Serena Purple’ seedlings were treated with 0.1% and 0.2% colchicine to induce polyploid lines, respectively. The resulting tetraploids had larger pollen and flowers, along with thicker, greener leaves distinguished by serrated edges, longer stomata, and lower stomatal density compared with diploid ‘Serena White’ and ‘Serena Purple’ plants. Both diploid and tetraploid plants subjected to a 20% volumetric water content (VWC) treatment exhibited smaller leaves, higher SPAD-502 readings, and a decreased number of flowers compared with those subjected to 40% VWC treatment. Moreover, tetraploids had higher photosynthetic rates than diploids under both 20% and 40% VWC conditions. When grown in 0.8-L containers, tetraploid plants required fewer watering events and had thicker, erect stems with larger flowers than diploids, even under a 20% VWC treatment. Colchicine-induced polyploidization presents a promising method to potentially enhance drought tolerance in angelonia.

Publisher

American Society for Horticultural Science

Reference28 articles.

1. Boldt JK. 2008. Cultural and environmental factors influence the performance of Angelonia angustifolia cultivars (PhD Diss). University of Florida, Gainesville, FL, USA.

2. The essential role of calcium ion on pollen germination and pollen tube growth;Brewbaker JL,1963

3. Estimation of nuclear DNA content in plants using flow cytometry;Doležel J,2007

4. Increasing water‐use efficiency directly through genetic manipulation of stomatal density;Franks PJ,2015

5. Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella;Gantait S,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3