The Use of Silicon Substrate Amendments to Decrease Micronutrient Concentrations at Varying Micronutrient Fertility Rates with Cannabis sativa ‘Auto CBG’

Author:

Veazie Patrick1,Jeong Ka Yeon2,Ballance M. Seth1,Whipker Brian E.1

Affiliation:

1. 2721 Founders Drive, Kilgore Hall, Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695, USA

2. 770 Silver Street, Sun Gro Horticulture, Distribution Inc., Agawam, MA 01001, USA

Abstract

Many abiotic factors impact the yield and growth of Cannabis sativa (cannabis). Cannabis has been reported to be a bio-accumulator of heavy metals. For growers who are targeting floral production and other byproducts for human consumption, this is a concern. Silicon (Si) has been examined as a beneficial plant element to limit the uptake of heavy metals in a variety of crops. The objective of this study was to determine the impact of Si on heavy metal micronutrient uptake and plant growth for greenhouse-cultivated cannabis at varying Si substrate amendments. ‘Auto CBG’ plants were grown in a 70:30 peat:perlite substrate with one of three varying calcium silicate (CaSiO3) (Si) substrate amendment rates, Si0X, Si0.5X, or Si1X (of 0.0, 1.04, and 2.07 kg⋅m−3 CaSiO3), and one of three micronutrient fertility treatments, M1X [0.49 boron (B), 0.19 copper (Cu), 4.02 iron (Fe), 0.99 manganese (Mn), 0.01 molybdenum (Mo), and 0.20 zinc (Zn) mg⋅L−1], M2X, or M4X, using a modified Hoagland’s solution, creating a 3 × 3 factorial. Plants grown with a Si1X substrate amendment exhibited a significantly lower iron concentration in the foliage and root tissue when compared with those grown in a substrate without Si. After 6 weeks of growth, Si0X plants that received a M4X fertility rate exhibited greater foliar micronutrient concentrations of B, Mn, Zn, Fe, and Cu than plants that received a Si substrate amendment when provided a M4X fertility rate. Additionally, lower micronutrient concentrations in floral tissue were observed in plants that received a Si substrate amendment for M2X and M4X when compared with plants that did not. Silicon substrate amendments had no impact on the cannabinoid concentration or plant growth metrics after 12 weeks of growth. This research suggests that using a Si substrate amendment in a greenhouse production system can limit excessive uptake and accumulation of micronutrients in the foliage, roots, and floral material of cannabis without negative impacts on plant growth or cannabinoid concentrations.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference32 articles.

1. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton, and hemp);Angelova V,2004

2. Nutrient disorders of ‘Evolution’ mealy-cup sage;Barnes J,2012

3. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes;Becker M,2020

4. Petunia (Petunia ×hybrida) cultivars vary in silicon accumulation and distribution;Boldt JK,2021

5. Silicon accumulation and distribution in petunia and sunflower grown in a rice hull-amended substrate;Boldt JK,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3