Factors Affecting Seed Germination and Establishment of an Efficient Germination Method in Sugar Pine (Pinus lambertiana Dougl.)

Author:

Shen Xiuli,Cho Myeong-Je

Abstract

Mature sugar pine (Pinus lambertiana Dougl.) trees produce large amounts of viable seeds but have seed dormancy. In this study, we used three sugar pine genotypes, 8877, 9306, and 9375, to test seed germination response. Seed germination from local sources varied greatly, and germination percentages were poor. There was a large variation in seed size and seed weight among the genotypes. Seeds of 9375 and 9306 were significantly larger and heavier (30.7 and 28.8 g/100 seeds, respectively) than 8877 (23.6 g/100 seeds). Three types of seeds—intact seeds, hulled seeds, and naked embryos—were examined for germination. Intact seeds failed to germinate due to the physical restraint and water impermeability of the seed. Chemical scarification with 5 m hydrochloric acid and 5 m sodium hydroxide did not soften the hard seedcoat and also failed to induce any germination of intact seeds. Hulled seeds resulted in an extremely low germination percentage (≤5%) with abnormal seedling development even though the endosperm was water permeable. Germination of the hulled seeds was not increased by adding 1 mg·L−1 gibberellic acid to the culture medium. Artificial opening of the hulled seeds created by longitudinal or horizontal cuts on the endosperm after removal of the seedcoat to avoid physical restraint and allow air exchange also failed to improve germination, indicating that inhibitors related to germination were present in the endosperm. However, naked embryos of all three genotypes germinated rapidly and uniformly with 70% to 95% germination percentage regardless of cold stratification treatment. Our data indicate that sugar pine seeds from the current source did not have physiological dormancy of embryos themselves, but dormancy was imposed by the seedcoat and endosperm. Using the naked embryos as donor explants, we have successfully established an efficient in vitro culture system. The protocol described here can be applied for the tissue culture and genetic transformation of sugar pine.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3