Author:
Casamali Bruno,van Iersel Marc W.,Chavez Dario J.
Abstract
New peach orchards in the southeastern United States are often not irrigated until 3 or 4 years after planting. During those years, the only water comes from rainfall. Droughts in the region are becoming more common, making irrigation more important. At the same time, fertilization practices follow recommendations developed decades ago and may not be optimal for current production practices. This research aimed to investigate the effect of different irrigation and fertilization practices on young ‘Julyprince’ trees grafted onto ‘Guardian™’ rootstock. The treatments consisted of irrigated vs. nonirrigated trees, drip- vs. microsprinkler-irrigated trees, and four different fertilizer levels (25%, 50%, 100%, and 200%; with 100% = current fertilizer recommendations). Responses to the treatments varied by year. In 2016, below-average rainfall (severe drought as classified by the U.S. Drought Monitor) was recorded throughout the year. This severe drought reduced the growth of nonirrigated trees compared with irrigated trees (average reductions of 56% in canopy volume, 39% in trunk cross-sectional area, 39% in leaf and stem water potential, and 40% in leaf photosynthesis). The adverse effects on tree growth and physiological responses of the 2016 season carried over to 2017, which was characterized by a short period of below-average rainfall in early spring. Nonirrigated trees displayed advanced budbreak progression; reduced commercial yield (10.9 vs. 13.4 kg/tree for nonirrigated vs. irrigated trees); and smaller trunk cross-sectional area (54.0 vs. 70.1 cm2) and canopy volume (8.9 vs. 10.9 m3) compared with irrigated trees. In 2018, rainfall was like the historical average throughout the year. Major differences continued to be trunk cross-sectional area (103.4 vs. 126.7 cm2) and canopy volume (15.8 vs. 17.8 m3), with nonirrigated trees being smaller than irrigated trees. No major or consistent differences were found between drip vs. microsprinkler irrigation or among fertilizer levels during the 3 years of the experiment. During the first years of orchard establishments, irrigation resulted in increased plant growth, commercial yield, and superior water status (higher values of water potential) compared with no irrigation, especially when rainfall was below the historical average. Although no major differences were found between the irrigation systems, drip irrigation used 35% less water than microsprinkler irrigation. While different fertilizer levels did not induce major differences in young trees’ growth and yield, potential economic savings and long-term effects of reduced fertilizer applications are being monitored as trees mature.
Publisher
American Society for Horticultural Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献