Red to Far-red Ratio During Seed Development Affects Lettuce Seed Germinability and Longevity

Author:

Contreras Samuel,Bennett Mark A.,Metzger James D.,Tay David,Nerson Haim

Abstract

Thermoinhibition and photosensitivity are two characteristics of lettuce seed that frequently affect its stand. The main objective of this study was to evaluate the hypothesis that lettuce seed germinability and longevity are affected by the red to far-red light ratio (R:FR) under which seeds maturate. ‘Tango’ lettuce seeds were produced in growth chambers under one of two treatments: 1) red-rich light (R treatment) and 2) far-red-rich light (FR treatment). For both treatments, the percentage of normal seedlings germinated at 20 °C–light was ≈100%. When germinated under the light, seeds from the R treatment exhibited a higher germination percentage and a faster germination (under a broader range of temperatures) than seeds from the FR treatment. When germinated in the dark, seeds from the R treatment germinated 100% between 12 and 23 °C and over 50% at 30 °C, whereas seeds from the FR treatment germinated less than 35% between 12 and 23 °C and less than 5% at 30 °C. Seeds from the R treatment had lower abscisic acid (ABA) content and were better able to germinate when exposed to external ABA concentrations than seeds from the FR treatment. Seed longevity as assessed by the accelerated aging test was higher in seeds from the FR treatment, indicating that red-rich light was detrimental to longevity. In another experiment, lettuce seeds that developed under similar conditions were harvested at approximately the moment of maximum dry weight accumulation and desiccated in dark, far-red, red, or fluorescent + incandescent light. Seeds desiccated under red light exhibited higher dark germination than the other treatments; however, no differences were observed in thermoinhibition or longevity. These results suggest that lettuce seed produced in an environment with a high R:FR light ratio will exhibit reduced thermoinhibition and photosensitivity as compared with production in a lower R:FR light environment.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3