Bench-top Root-zone Heating Hastens Development of Petunia under a Lower Air Temperature

Author:

Olberg Madeline W.,Lopez Roberto G.

Abstract

Heating accounts for up to 30% of total operating costs for greenhouse operations in northern latitudes. Growers often lower air temperatures for production to reduce energy costs; however, this causes delays in development even in cold-tolerant crops, such as petunia (Petunia ×hybrida). This delay increases production time and can reduce profitability. Recent studies on low air temperature bedding plant production indicate petunia as a strong potential candidate for using lower air temperatures in combination with bench-top root-zone heating (RZH) to avoid or reduce delays in development. The objectives of this study were to 1) quantify time to flower (TTF) of seven petunia cultivars and two recombinant inbred lines (RILs) when the mean daily air temperature (MDT) was lowered by 5 °C and bench-top RZH was used and 2) determine if a high-quality petunia crop can be produced on RZH. Petunia ‘Sun Spun Burgundy’, ‘Sun Spun Lavender Star’, ‘Sanguna Patio Red’, ‘Potunia Plus Red’, ‘Potunia Plus Purple’, ‘Supertunia Red’, ‘Supertunia Bordeaux’, and two RILs, IA160 and IA349, were grown in a greenhouse with an MDT of 15 °C without RZH or with a RZH set point of 21, 24, or 27 °C. Additionally, a commercial control (CC) was established by growing plants without RZH at an MDT of 20 °C. All plants were grown under a 16-hour photoperiod to provide a daily light integral (DLI) of ≈12 mol·m−2·d−1. Time to flower was shorter at higher RZH set points. For example, TTF of ‘Potunia Plus Red’ was 56, 52, 49, or 47 days for plants grown at an MDT of 15 °C without RZH, or with RZH set points of 21, 24, or 27 °C, respectively. When a RZH set point of 27 °C was employed, TTF of all cultivars and inbred lines, except ‘Potunia Plus Red’ and ‘Sanguna Patio Red’, was similar to plants grown in the CC. Shorter stem length, lower growth index, and smaller shoot dry mass (SDM) at flowering were observed for plants grown under lower air temperatures with RZH, resulting in a more compact and high-quality plant. Producing a compact plant in a shorter time period is beneficial for growers; thus, results suggest that MDT can be lowered to 15 °C for petunia production when a RZH set point of 27 °C is employed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3