Micropropagation of Agave americana

Author:

Chen Ying,Chen Xinlu,Hu Fei,Yang Hua,Yue Li,Trigiano Robert N.,Cheng Zong-Ming (Max)

Abstract

Agave species are economically important plants in tropical and subtropical desert ecosystems as ornamentals as well as potential bioenergy crops. However, their relatively long life cycles and the current lack of biotechnology tools hinder their breeding. In this study, an efficient system for micropropagation was developed for Agave americana L. by using basal stems as explants and grown on a modified Murashige and Skoog medium (MSI) or a 1/2 MSI medium supplemented with various concentrations of 6-benzylaminopurine (BA) for shoot proliferation. The highest number of shoots (18.5 shoots/explant) from basal stems was obtained on MSI supplemented with 13.32 μM BA. An efficient shoot regeneration system was also developed from leaf tissues. Combinations of auxin with cytokinin, basal media, and leaf regions were optimized for shoot induction. Adventitious shoot formation from leaf segments was induced and proliferated with combination ranging of 0.54 to 2.68 μM [α-naphthaleneacetic acid (NAA)] with 8.88 to 13.32 μM (BA), and the maximum frequency (≈69%) was obtained with 2.68 μM NAA plus 13.32 μM BA. MSI medium and the basal segment of leaf affected shoot induction. The highest rooting frequency and mean number of shoots occurred in 1/2 MSI containing with 4.92 μM indole-3-butyric acid (IBA) alone (90%, 3.4) or 1.48 μM IBA plus 1.61 μM NAA (92%, 5.2). Survival of in vitro plantlets after transfer and acclimatization to ex vitro conditions was 87%. This is the first complete protocol for micropropagation of A. americana.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3