Micropropagation Shortens the Time to Blooming of Begonia montaniformis × Begonia ningmingensis var. bella F1 Progeny

Author:

Lai I-Ling,Lin Chih-Wan,Chen Tsai-Yu,Hu Wei-Hsin

Abstract

Begonia montaniformis × Begonia ningmingensis var. bella hybrids have high ornamental potential. Hence, the aim of this study was to determine the optimal conditions for the micropropagation of a Begonia montaniformis × Begonia ningmingensis var. bella F1 progeny by using various concentrations of plant growth regulators (PGRs) and varying light spectra in half-strength Murashige and Skoog (1/2 MS) medium. The results showed that the explant regeneration was optimal when the lamina was incubated in a medium supplemented with 2.0 μM N6-benzylaminopurine and 0.8 μM α-naphthaleneacetic acid (NAA). Under such conditions, 98% of the explants regenerated adventitious shoots after 8 weeks, and 41 buds were produced per explant on average. The mean shoot length was 9.6 mm, and on average, 4.5 shoots per explant were more than 2 mm long. Subsequently, the induced adventitious shoots were transferred into rooting medium consisting of 1/2 MS and various NAA concentrations. After 4 weeks, the shoots subcultured in this medium showed ≈93% root induction and an average of 3.5 adventitious roots per explant. Furthermore, the applied light spectrum significantly influenced shoot regeneration, and optimal results were achieved under an equal distribution of blue, red, and infrared light. The histological sections of shoots regenerated from direct organogenesis were observed through scanning electron microscopy (SEM). Afterward, the rooting adventitious shoots were subcultured in PGR-free medium for 8 weeks. The seedlings were successfully acclimated 4 weeks after being transferred to soil and bloomed after 11 months in a greenhouse. Thus, the PGR composition in micropropagation efficiently shortened the time to blooming from 25 to 16 months.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3