Development of PCR-based Fingerprinting Tool in Banana (Musa sp., AAA) and Conversion of Negative to Positive DNA Marker

Author:

Umali Reynato P.,Kameya Nanako,Nakamura Ikuo

Abstract

The banana (Musa sp., AAA) genome is continuously expanding due to the high frequency of somaclonal variation. Because of this increasing diversity, numerical and morphological methods of taxonomic and phylogenetic identification of banana cultivars became laborious, difficult, and often the subject of disagreements. The aim of this study, therefore, is to develop molecular tools for DNA fingerprinting that can discriminate Musa, AAA Cavendish subgroup cultivars. In this paper, we showed that the plastid-subtype identity (PS-ID) sequence of the noncoding region between rpl16 and rpl14 genes of plastid DNA was highly conserved except for single-base substitution and deletion. These differences separated the clones into three groups (G1, G2, and G3) and suggested that clones within groups are closely related maternally. Using arbitrary primer A13, we later identified negative RAPD markers A133.0 and A131.3 specifically for S4 (selection from Giant Cavendish subgroup, AAA) and S11 (`Morado' from `Red' and `Green Red' subgroup, AAA), respectively. Fragments corresponding to the missing bands were sequenced and used as templates to design new primers with overlapping sequences. Two of these primers, Ba3.0A and Ba1.3A, successfully generated positive markers consistently amplified as Ba3.0A0.8 and Ba1.3A0.6 for S4 and S11, respectively. It is proposed that the method just described can be a better alternative over screening more arbitrary primers in generating positive markers in cases when negative ones were already identified. Results of PS-ID subtype analysis likewise suggested potential use in identifying wild maternal progenitor in polyploid bananas.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3