Active Sugar Accumulation and Water Status of Watermelon Fruit Grown under Different Nutrient Concentrations in Hydroponic Culture

Author:

Tomiyama Sentaro1,Yakushiji Hiroshi2,Osawa Masako3,Yanagida Kenta1,Sato Nana1,Matsumoto Yusuke1,Ikeda Takashi1

Affiliation:

1. School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan

2. Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739-2494, Japan

3. Hagihara Farm Co., Ltd., Tawaramoto, Nara 636-0222, Japan

Abstract

We investigated sugar (solute) accumulation in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] fruits at the immature stage. Watermelon plants were grown hydroponically in a nutrient solution with an electric conductivity (EC) of 1.2 S⋅m−1 (EC 1.2 regime); then, fruits were harvested 21 days after anthesis. The flesh of each fruit was divided into seven different parts to measure the sugar concentration and water status. The results indicated that the sugar concentration was higher in the center of the fruit flesh than in the other parts, such as around the pericarp. Moreover, the lowest osmotic potential was observed in the center of the fruit flesh, indicating solute accumulation. Concurrently, when the transport of photosynthates in the fruit was investigated using the 13CO2 isotope, the active solute accumulation in the center of the fruit flesh was observed, supporting the observed sugar accumulation in this part. Consequently, this active solute accumulation and distribution occurred in the center of the watermelon fruit, as demonstrated by the data of osmotic pressure and sugar concentration and supported by the observed active photosynthate accumulation. Additionally, we investigated these measurements by increasing the nutrient solution concentration 14 days after anthesis. As a result, fruit growth was slightly inhibited using the EC 3.0 regime, and 13C translocation was also inhibited in the fruit, especially in its center. Even though the sugar concentration and osmotic pressure of the fruit flesh were not clearly affected by high nutrient solution concentrations, the cell turgor of the central flesh of the fruit grown using the EC 2.0 and 3.0 regimes was lower than that of the fruit grown using the EC 1.2 regime. Treatments with higher nutrient concentrations might have negative effects on immature watermelon fruits.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference25 articles.

1. 13C−labelling of leaf photoassimilates to study the souse−sink relationship in two Iranian melon cultivars;Barzegar,,2013

2. Water relations of plants and soils;Boyer,,1995a

3. Measuring the water status of plants and soils;Boyer,,1995b

4. Carbohydrate accumulation and color development in watermelon;Brown,,1987

5. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation;Cheng,,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3