A New Approach for Analyzing and Interpreting Data on Fruit Drop in Mango

Author:

Hagemann Michael H.,Roemer Malte G.,Kofler Julian,Hegele Martin,Wünsche Jens N.

Abstract

Mango yields are frequently reduced by premature fruit drop, induced by plant stresses during the fruit set period in response to unsuitable climatic or crop management conditions. There are varying strategies for assessing premature fruit drop, which render the comparison and interpretation of published data difficult to draw general conclusions. Therefore, the objective was to provide a mathematical model that is generally valid for describing fruit losses of mango. The model was tested and validated by monitoring the fruit drop for the two local North Vietnamese cultivars, Hôi and Tròn, in different management systems over six consecutive growing seasons: 1) mango–maize intercropping and mango monocropping; 2) irrigation; and 3) plant growth regulator applications with 10 ppm N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU), 40 ppm 1-naphthaleneacetic acid (NAA), and 40 ppm gibberellins (GA3 and GA4+7). The timely pattern of fruit drop was best described with a sigmoid function (r2 = 0.85) and formed the basis for defining three distinct drop stages. The post-bloom drop, from full bloom to the maximum daily rate of fruit drop [FD(x)], had the highest fruit losses. The following midseason drop stage ends at 1% FD(x), a threshold that is suggested after a comprehensive literature review. Thereafter, during the preharvest drop stage, treatment and cultivar differences appear to remain constant despite continued fruit drop. In contrast to other mango intercropping studies, fruit loss was not greater in the mango–maize intercropping than in the mango monocropping. Irrigation resulted in approximately three times higher fruit retention compared with the non-irrigated control. A single application of NAA at marble fruit stage (BBCH-scale 701) resulted consistently in the highest fruit retention for both cultivars in midseason and at harvest. The model permits the separation between the drop stages, thus allowing the evaluation of 1) natural variation before treatment effects during post-bloom drop; 2) treatment efficacies during midseason drop; and 3) yield forecasting at the beginning of the preharvest stage.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3