Establishment of a Rapid and Efficient Micropropagation System for Succulent Plant Haworthia turgida Haw.

Author:

Liu Boling,Fang Hongzhou,Meng Chaorong,Chen Ming,Chai Qingdong,Zhang Kai,Liu Shijuan

Abstract

In the present study, the effect of plant growth regulators (PGRs) on callus regeneration, adventitious shoot differentiation, and root formation of Haworthia turgida Haw. was investigated. The greatest callus induction percentage (95.6%) was achieved with leaf explants inoculated on Murashige and Skoog (MS) medium with 1.0 mg·L−1 6-benzyladenine (BA) and 0.1 mg·L−1 1-naphthaleneacetic acid (NAA), and this callus induction medium supplemented with 2.5 mg·L−1 thidiazuron (TDZ) was optimal for callus proliferation. The maximum number of shoots (25.7) was obtained when the callus was cultured on MS medium supplemented with 1.0 mg·L−1 BA and 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D). The highest number of roots per shoot (6.2) and highest rooting frequency (82.0%) were obtained when adventitious shoots were inoculated on MS medium with 0.05 mg·L−1 NAA. Regenerated plantlets were transferred to a mixture of vermiculite and soil and acclimated in a greenhouse. The survival rate of the transplanted plantlets was about 91.6%. The rate of ex vitro rooting was 83.3%, indicating that this technique is effective for root induction in H. turgida. This study has established a rapid and efficient micropropagation system that can be beneficial for commercial cultivation and germplasm conservation of H. turgida.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of the in-vitro culture protocol of Haworthiopsis viscosa and Haworthia truncata var. truncata;South African Journal of Botany;2024-06

2. Efficient in vitro plantlets regeneration from leaf explant of Haworthia retusa, an important ornamental succulent;Journal of Horticultural Sciences;2023-06-30

3. In Vitro Propagation of Edithcolea grandis;Proceedings of the National Academy of Sciences, India Section B: Biological Sciences;2023-04-26

4. Transformation of Kalanchoe pinnata by Agrobacterium tumefaciens with ZsGreen1;Plant Cell, Tissue and Organ Culture (PCTOC);2021-04-07

5. TDZ and 2,4-D on in vitro propagation of panda plant from leaf explants;Ornamental Horticulture;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3