Does Inducing Tetraploidy in Vaccinium ovatum Improve Fruit Traits and Plant Architecture?

Author:

Neill Kristin E.1,Contreras Ryan N.1

Affiliation:

1. Department of Horticulture, Oregon State University, 4017 Agricultural and Life Sciences Building, Corvallis, OR 97331

Abstract

Vaccinium ovatum (evergreen huckleberry) is an evergreen shrub native to the Pacific Northwest. Evergreen huckleberry is diploid (2n = 2x = 24), but unreduced gametes have been reported that facilitated in interspecific tetraploids. To our knowledge, tetraploid forms of evergreen huckleberry have not previously been evaluated. There is interest in this species as a native, edible, evergreen landscape shrub, but it requires improvement of the fruit and plant qualities for an eventual cultivar release. To obtain variation in plant qualities, we induced polyploidy in a collection of plants in 2013. The purpose of this study was to assess the impacts of polyploidy on the fruit and plant qualities of V. ovatum. This fruit and plant quality study provides a contribution to the scientific knowledge base that is currently lacking for evergreen huckleberries. Plant qualities were determined by measuring plant height and width, obtained in Fall 2017. The fruit volume (mm3) and for soluble solids content (SSC, °Brix) were measured using a digital caliper and a digital refractometer, respectively. Measurements were taken on diploid, mixoploid, and tetraploid (2x, 2x + 4x, 4x) cytotypes, once in 2017, five times over 9 weeks in 2018, and three times over 9 weeks in 2019. Tetraploids had larger fruit than diploids in 2017 (P < 0.0001), suggesting there was a gigas effect from polyploidy in evergreen huckleberries. However, during 2018 and 2019, tetraploid fruit was smaller than that of diploid and mixoploid genotypes. Differences were observed in diploid fruit volume among all years (P < 0.0001) such that 2019 was largest and 2017 was smallest. It is unclear what led to this variation. In tetraploids, SSC was statistically significant among years (P = 0.0002) such that 2017 was highest and 2019 was lowest. Although our preliminary data suggested that induced polyploidy may result in larger fruit, this was not observed in subsequent years, and it does not appear that tetraploids necessarily will have larger or sweeter fruit. However, these tetraploids may facilitate crossing with other species at the tetraploid level as a means for improvement of various traits.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3