Timed Release of Flurprimidol from a Granular Formulation in Mulches and Sand

Author:

Grey Timothy L.,Czarnota Mark,Potter Thomas,Bunnell B. Todd

Abstract

Flurprimidol is a plant growth regulator that can be applied as a granular formulation. Understanding flurprimidol release from a granular formulation and movement in various mediums will impact how it is used. Dissipation of flurprimidol from a granular formulation and movement through organic media and sand were evaluated in a greenhouse and laboratory experiment. Experimental variables included media type, depth, and irrigation event. Dissipation isotherms were determined by applying nonlinear regression. Mobility was evaluated using columns filled with media, which was surface-spiked with the granular formulation and then irrigated once daily for 22 consecutive days. Leachate was collected and analyzed by high-performance liquid chromatography–mass spectroscopy. Half-life (DT50), defined as time to 50% reduction, varied among sand, media, and media depth. Flurprimidol dissipation was rapid through sand with DT50 of 6 days. DT50 increased with increasing media depth from 5 to 10 cm for pine bark plus sand, 18 and 35 days, and hardwood bark plus sand, 77 and 173 days, respectively. Maximum flurprimidol leaching was a cumulative 71% of applied amounts over 22 irrigation events through the sand. Hardwood and pine bark media allowed less than 25% of flurprimidol to escape through the column. Data for all media indicated that flurprimidol was mobile through the substrates but exhibited hysteresis with pine bark and hard wood bark media. An initial pulse of flurprimidol will release slowly from this formulation over time. These results indicate that flurprimidol will dissipate from a granular formulation over time and that it will have movement through sand soil and pine bark and hardwood bark media to reach the roots of growing plants.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3